
Managing Inter-Organizational Workflows With TEAM

Luiz Antônio M. Pereira
Banco Central do Brasil

Av. Presidente Vargas, 730 - 14th floor
Rio de Janeiro - Brazil - 20071-001

luiz.pereira@bcb.gov.br

Rubens Nascimento Melo
Pontifı́cia Universidade Católica do Rio de

Janeiro
PUC-Rio. R. Marquês de São Vicente, 225

Rio de Janeiro - Brazil - 22453-900

rubens@inf.puc-rio.br

ABSTRACT
This work presents TEAM, an architecture, a workflow spec-
ification language and the events broadcasting mechanism
for the management of workflows in distributed autonomous
and heterogeneous environments, which are the predomi-
nant characteristics in groups of specialized organizations
that collaborate for the accomplishment of common busi-
ness goals. As in peer-to-peer (P2P) networks, the archi-
tecture is based on the functional similarity between execu-
tion nodes and in the direct communication (with no media-
tion) between peers. The distributed activities coordination
is achieved by distributed workflow execution engines that
process workflows specified in a declarative language that
captures the factual, functional and temporal perspectives.
We also present the collaborative mechanism used in the
broadcasting of facts and in peers management.

Categories and Subject Descriptors
H.4.1 [Information Systems Applications]: Office Au-
tomation—Workflow management

General Terms
Management

Keywords
Interorganizational Workflow Management, Distributed Work-
flows, Workflow Specification

1. INTRODUCTION
Modern organizations seek ways to minimize their produc-
tion costs in order to maximize their profits. One of the
alternatives they adopt is to specialize themselves to reach
production scale.

The (high) specialization demands the coordination of many
distributed activities required to produce goods that are
valuable to end users. A workflow management system

(WfMS) would be helpful in this case, provided that it had
communication support and capabilities to control artifacts
and context info that cross the organizations borders. To
these requirements must be added the ability to deal with
the autonomy of the participating organizations and their
(inevitable) heterogeneity. Other desirable features of this
interorganizational WfMS would be the ability to support
dynamism while providing the adaptability and flexibility
(cf. Sadiq et al in [15]), needed to handle frequent and quick
changes typically experienced by the markets nowadays [12].

This work presents an informal description of TEAM, an
architectural model and the related technologies and tech-
niques for managing weakly structured, distributed work-
flows in environments composed of heterogeneous and au-
tonomous organizations.

TEAM was conceived to support environments composed of
independent organizations that need to collaborate in the ac-
complishment of well defined macro (or global) goals. They
must be guided by WfMSs capable of dealing transparently
with distribution, technological heterogeneity and autonomy
of the partners. These WfMSs must also easily interface
with each eventually existing local WfMS.

The architecture and the declarative workflow specification
language, which is also described, permit us to have, in the
same operating environment, a set of open technologies re-
quired to handle the interorganizational portion of the global
processes. We also present the mechanisms for (1) handling
the collaborative broadcasting of the messages exchanged be-
tween execution nodes during the distributed execution of
processes and (2) managing the execution nodes list.

The remainder of this paper is structured as follows: in sec-
tion 2 we present the TEAM architectural characteristics;
section 3 presents the declarative language used to specify
processes in TEAM; in section 4 the mechanisms for collab-
orative dissemination of facts and execution control infor-
mation, as also the management of the execution nodes list
are described; section 5 discusses how interorganizational
workflow coordination is accomplished in TEAM; in section
6 we evaluate important characteristics and features pro-
vided by TEAM, such as interoperability, flexibility, auton-
omy and the expressiveness of the specification language.
Finally, in section 7, we present the current research situa-
tion at the Database Technology Research Lab of PUC-Rio
– TecBD/PUC-Rio – in the workflow management area and



Web services for data 
sources access

Web services for data 
sources access

JSPJSP

ApplicationApplicationBrowserBrowser

User associated to site i

Control
Info.

Data

Metadata

Web services

Workflow
enactment service

Figure 1: Three-tier architecture of a peer in TEAM

the concluding remarks of the paper.

2. TEAM ARCHITECTURE
TEAM-based environments are composed of sets of linked
but independent and similar execution nodes also called
peers or pairs. Each organization may have one or more
active nodes, which operate as the environment interfaces
to (local) users and other systems interfaces. They provide
access authentication, interaction and execution control and
also management of the global execution context. A site is a
logical collection of peers that share the same business con-
text, being associated, typically, to just one organization.
There must exist at least one active peer in each participat-
ing organization.

There is no functional distinction between peers, although
in [13, 14] we admitted that some of them could also work
as interfaces to computational grids.

In TEAM environments, each participating organization is
free to adopt different technologies for processes and data
management as also different data models.

We designed the architecture based on the classic architec-
tural pattern for heterogeneous databases integration con-
sisting of wrappers and mediators ([21]).

In TEAM each peer is a stack of three layers. Figure 1
illustrates an i-th generic pair.

A web browser or a .NET application, for instance, may re-
alize the user-environment interface, which is a set of web
services. In figure 1, the double dotted arrow represents a
possible user interface realized by an application other than
a web browser. Stand-alone applications, software agents
or local WfMSs may interact directly with the environment.
The double dotted line represents the user-environment in-
terface. If this interface is realized by a web browser, a JSP
– Java Server Pages – intermediate layer may be required.

The second layer corresponds to the operating core of the
peer and is composed of a workflow enactment service that
may host one or more workflow engines. Each engine man-
ages the proper portion of one whole workflow instance, pro-
cessing rules and defining message contents and controlling
task items for/of the users assigned to the corresponding
peer. The workflow enactment service is wrapped by one
set of web services that form the interface with the first
layer and by other set of web services to accept requisitions
from workflow engines of other peers in the network (inter-
face 4, cf. the WfMC in [10]). Besides sending requisitions
to other workflow engines, one engine may get, and pos-
sibly store, artifacts originated from other repositories of
the network. Workflow engines are also responsible for syn-
chronizing and/or migrating workflow execution states ([4]).
Conceptually, the workflow enactment service layer, besides
being a WfMS, also acts as a mediator ([21, 23]), provid-
ing to the layer above an integrated view of the distributed
execution environment.

The bottom layer provides data persistency for the enact-
ment services layer. This layer is also wrapped by a set
of services that realize its interface, via JDBC, with the
data sources. With this, peers may adopt diverse persis-
tency technologies and data models. This layer deals, basi-
cally, with three data classes: standardized business objects
metadata (XML descriptors, in Dublin Core, for instance),
object data and workflow control information composed of
workflow definition and state (facts). Other classes (e.g. on-
tologies for data semantic integration) may be added to the
repositories as needed. The repositories of a peer may be
directly accessed (via the web services wrapper) by work-
flow engines of other peers. The web services layer works
as a XML wrapper, providing data integration and loose
coupling.

Interoperability is also granted by the workflow enactment
layer that conceptually works as a (distributed) mediator to
provide peers´ data and services access in every peer.

Security in TEAM can be provided by the security mecha-
nisms available in today´s web services technology.

The architecture, in a Software Engineering point of view,
can be understood as a framework, as it contains invari-
ant and variant aspects of environments in the scope of dis-
tributed collaborative applications. It can also be regarded
as a multi-agent system, as each pair can be seen as a soft-
ware agent. In the Database community point of view, the
architecture can be regarded as a data integration mecha-



nism based on wrappers and multiple mediators.

TEAM may be applied not only in the public portion but
also in the private portion of interorganizational workflows
(cf. [16, 18]), easily coexisting with other WfMS.

3. THE WORKFLOW SPECIFICATION LAN-
GUAGE

Many of the workflow specification languages that we stud-
ied ([1, 7, 8, 22, 2, 17, 19]), including the ones that provide
higher levels of flexibility, use graphical constructs (and/or
mappings to XML) to specify the workflows; they are, con-
ceptually, graphs that define sets of partially ordered activ-
ities.

Despite the expressiveness of graphic languages, we believe
that a single drawing is unable to capture all the dimensions
(structural, functional and temporal) required to a precise
model while keeping, at the same time, comprehensiveness
by humans. This belief is based on, for instance, the need of
at least three UML diagrams (commonly use cases, classes
and sequences diagrams) to model a simple information sys-
tem.

Due to this reason, inspired by a plans specification lan-
guage described in [5] and by Mangan and Sadiq ([11]), we
proposed a textual notation to specify workflows models in
three layers:

1. Data (or factual) layer, which comprises the facts, i.e.,
information on the participating entities and on the
process execution context;

2. Functional layer, which comprises the data transfor-
mation operations (activities that compose the pro-
cesses) and the structure according to which they may
be executed;

3. Temporal layer, which corresponds to the temporal re-
strictions to be applied to the execution of the opera-
tions.

This notation, briefly described in the following sections,
specifies workflows by predicates, combining concepts and
syntax found in the two references mentioned above. The
complete description of the language can be found in [6].

3.1 The Factual Layer:
Data are specified using the following clauses:

1. peer(idPeer, aliasPeer);

2. role(idRole);

3. executor(idExecutor, idRole);

4. businessObject(idObject, aliasObject);

5. setCondition(condition); or

6. setCondition(condition, scope); or

7. setCondition(variable = value, scope);

Peers are identified by an IP port number and the IP address
of the host it is running on. An “@” is required to sepa-
rate both information (e.g. 2458@192.168.7.15). The clause
peer(idPeer, aliasPeer); defines an alias aliasPeer, with
local scope (valid within the model only), for the pair with
ID idPeer. An example is peer(3469@139.82.120.32, puc);.
The use of peer clauses is optional.

Roles are declared using clauses role.

An executor is referenced by his/her ID followed by an “@”
followed by the alias of his/her home peer (every execu-
tor is associated to a peer – called his/her home peer –
that stores his/her profile and provides authentication). So,
executor(lpereira@puc, student); specifies that lpereira,
which home peer is 3469@139.82.120.32, interprets the role
student.

The clause businessObject(idObject, aliasObject); permits
the association of a business object to an alias by which this
object may be referenced throughout the model. Objects
IDs are formed by the concatenation of a local ID (unique
in the scope of the peer), an “@” and the peer ID or alias
where it is stored.

Clauses setCondidion may be used to establish initial execu-
tion state. They may be applied to a global condition (as a
second parameter), to a unique executor (the scope is the ex-
ecutor ID) or to all executors that interpret a given role. As
an example, the clause setCondition(paa done, lpereira);
specifies that paa done is the condition to be associated
to the executor lpereira when the workflow instance be-
gins. Conversely, if clause setCondition(paa done, student);
is specified, the initial condition paa done will be set to all
students in the model. A condition (corresponding to a fact
in the database) can be also set by a statement of the form
variable = value.

3.2 The Functional Layer:
In the functional layer we list tasks and their pre and post
conditions. Tasks are specified by activity clauses, as fol-
lows:

activity(idActivity,

activityLabel,

executor,

preCondition,

action,

postConditions);

where

• idActivity identifies the activity;

• activityLabel is a string containing the label of the



activity;

• executor is the executor’s ID, which can be an indi-
vidual or a role;

• preCondition is a boolean expression that, when eval-
uated as true, queues action to be executed;

• action is the ID of a business object operation, execu-
tion environment or workflow engine operation to be
executed;

• postConditions defines what will be turned into fact
after the successful execution of action.

Facts may be global (only one instance per workflow in-
stance), may refer to individuals or to roles. A global fact
is expressed, for instance, as end program. A condition for
every student would be, for instance, student.paa done, to
be evaluated for the students executing paa done. For an
individual it would be, for instance, lpereira.paa done.

As an example, the following sentence

activity(EscolhaModuloSinteseImagens,

”Escolha do modulo a ser cursado”,

aluno,

aluno.avaliacao fundamentos done,

aluno.chosen module =

workflow.chooseOne(aluno,

SI ModuloA, SI ModuloB),

aluno.chosen module == 1?

aluno.SI ModuloA chosen :

aluno.SI ModuloB chosen);

specifies that the activity identified by
EscolhaModuloSinteseImagens, which label is
”Escolha do modulo a ser cursado”, to be executed by
alunos, requiring that avaliacao fundamentos done is a
fact for aluno to execute a choice between two objects (aliased
as SI ModuloA and SI ModuloB). If the first option is
chosen, condition SI ModuloA chosen becomes a fact, oth-
erwise, SI ModuloB chosen becomes a fact.

One activity must be assigned to just one executor. This
limitation can be overcome by splitting the activity in two
sub activities.

3.3 The temporal layer:
Information of the temporal layer correspond to the time re-
strictions associated to the execution of activities of a pro-
cess. These restrictions are defined relative to the initial

date or absolutely. The initial date is specified by the clause
beginInstance(aaaammddhhmm) that are the date, hour
and minute after which pre-conditions will start to be eval-
uated in order execute activities.

After the evaluation of the pre-conditions, the workflow en-
gine associated to the workflow instance in a peer checks for
time restrictions, starting or blocking activities.

The clause intervalConstraint(idActivity, notBefore,
notAfter); specifies that the activity identified by idActivity
will start not before notBefore and will end not after
notAfter. One of these two parameters may be omitted
(it would be a nonsense to omit both), but all commas are
required. Times are expressed as [+]yyyymmddhhmm (yyyy
for the year, mm for the minute, dd for the day and hhmm
for the hour and minute). if a “+” precedes one of these pa-
rameters, it means that it is to be relative to the date/hour
specified by beginInstance(aaaammddhhmm).

A restriction expressed in the form durationConstraint
(idActivity, minDuration, maxDuration);, imposes a min-
imum and/or maximum duration for the activity idActivity.
Durations are expressed in the form yyyymmddhhmm and
one of these two parameters may be omitted. Clauses
intervalConstraint and durationConstraint can be speci-
fied for the same idActivity.

4. MESSAGES, DATA MANAGEMENT, QUE-
RY PROCESSING AND TEAM NETWORKS
MANAGEMENT

Peers communicate exchanging messages. These messages
are classified according to the objective, according to the
range and according to the dissemination mechanism.

Messages are:

• to announce a (voluntary) entry or exit of a peer. In
this case, the peer that is entering or leaving the net-
work sends the message, which needs to reach all the
other peers. The message broadcast is done in a col-
laborative way (as we will see in details bellow). When
a peer involuntarily leaves the network (due to an ex-
ception, for instance), the message announcing that a
peer left the network is broadcast (also collaboratively)
by the peer that notes its absence, probably its father
in the network;

• query propagation. Queries may be placed in order
to find business objects or to query the status of a
process. They are also broadcast.

• to announce a new workflow instance. In this case,
messages contain the complete specification (model)
of the new workflow instance and are originated in the
peer where the workflow instance is published. They
are addressed to the peers where the workflow instance
will be executed.

• to inform a new fact, such as the conclusion of a task.
These messages are sent by the peers where the facts
occurred and are addressed to the peers that run any
part of the same workflow instance;



• to inform the conclusion of a workflow instance sec-
tion. Every peer that controls a portion of a workflow,
at its end, sends this fact to the peer that controls
the workflow instance (the same that published the
instance).

• to inform a workflow instance cancellation. The peer
that published the workflow instance may inform its
end, be due to the end of all portions or be due to a
cancellation by the publisher.

A new query instantiates a new query execution thread on
the peer that it is originated. The query is replicated collab-
oratively throughout possibly all peers in the network, i.e.,
every peer that receives a query, besides executing it against
its own data repository, replicates the query to other n peers
(we use n = 2) of its own list of connected peers, as we will
see below.

The query execution thread generates the query command,
gives to it an unique network ID (a sequential number con-
catenated to the peer ID), initializes a response control vec-
tor (which is used to check if the responses from all other
peers were received – a timeout may occur), passes the query
command to the n peers it points to, at the same time it
executes que query against its own data repository. The
query replication process continues until all peers receive
and process the query. The results are sent directly to the
peer that originated the query. Queries already processed
are discarded.

The list of active peers must be kept updated in every peer
of the network. The messages dissemination mechanism also
requires that they must be structured in the same manner
in each peer.

The list of peers is structured as an n-ary tree, which is im-
plemented as a vector of peer IDs sorted ascending. Figure
2-a illustrates the case where n = 2 – a binary tree – omit-
ting, for simplicity, the suffix of the IDs. M is the number
of peers in the network, being equal to 10 in the example.

A peer that receives a query to be processed or a message to
be forwarded knows its position – suppose i – in this vector.
The peer determines the beginning of the list of n peers
(initial position p(i) in the vector), to which it must forward
the query or message. p(i) is evaluated by the following
simple expression:

p(i) = 2 + (i− 1)n (1)

As an example, still referring to figure 2 and applying eq.
1, peer 1144 (position i = 4 in the list) needs to propagate
a query it receives to the n = 2 peers with IDs initiating
at position p(4) = 2 + (4 − 1)2 = 8, i.e., to peers 1313 and
1318. If it is the case that p(i) or any of its n− 1 successors
is greater than M , peer position 1 (root) will be the peer to
which the query or message must be sent to.

As we said, queries or messages already received (and so
already forwarded) by a peer are discarded, requiring that
each peer must keep a list of message IDs (recently) received.

1021 1033 1103 1144 1145 1148 1201 1313 1318 1320

1021

1033 1103

1144 1145 1148 1201

1313 1318 1320

(a)

(b)

M = 10

Figure 2: Connected peers list structure and imple-
mentation in TEAM. (a) is the vector of connected
peers IDs as stored in every peers and (b) is the tree
structure it represents.

With this, the messages/queries broadcasting burden is dis-
tributed to all peers in a TEAM network.

Despite TEAM networks are not ad hoc networks, as all
partners are required to participate playing specific roles in
a process, it is important to consider the cases that the peer
lists are not synchronized. This may happen right after a
peer leaves the network, leaving orphans peers, and so peers
that will receive no messages or queries to be processed and
(re)forwarded.

Generally speaking, two possible consequences may arise
from this temporary non synchronism: (a)one or more peers
receive more than one copy of a message/query and (b) one
or more peers receive no messages/queries.

As peers only process the first copy of a query/message, case
(a) is trivially handled. Case (b), although, needs a more
complex analysis, which depends on the reason for the non
synchronism.

The non synchronism of the peers list may be due to:

1. The entry of a new peer in the network, while its reg-
istry has not been completely processed by all existing
peers yet. In this case, if there are already n peers
in the network – the new one being the (n + 1)th –,
n− 1 peers would have the original list while the peer
to which the new peer has introduced itself would have
n+1 peers in its list. This case unfolds into other two
(sub)cases:

(a) if the new peer, after having its ID inserted in the
list of the peer to which it has introduced itself, is
to become one of its sons, this one processes the
message, forwards it to its previous and to the
new sons and then updates its peers list. During
this process, the peers that receive the messages
also update their lists;



(b) if the new peer, after having its ID inserted in the
list of the peer to which it has introduced itself, is
not to become one of its sons, this one processes
the message, forwards it to its current sons and to
the future father of the new peer, also informing
them the entry of the new peer. In this case, it
is also important that the peer to which the new
peer introduces itself, verifies that, with the entry
of this new pair – even not becoming one of its
sons – the list of its sons would be affected. If
this is the case, messages must be sent also to the
previous and new sons, as in the previous case.

2. A peer announced its exit from the network, while the
message is not completely processed by all other peers.
In this case, the peer that leaves the network may ask
its father to temporarily ”adopt” its sons or simply
leave the network, reducing this case to case below;

3. A peer involuntarily left the network. The peer that
notices the missing of a peer adopts temporarily its
sons, if it is its father, or tells the father of the missing
peer that one of its sons has left the network.

5. DISTRIBUTED WORKFLOW MANAGE-
MENT

Workflows specifications is implemented in XML for stor-
age and distribution. As we already discussed, the list of
executors (with their respective home peers) is given in the
model. This list defines which peers will need a copy of the
workflow specification, where portions of the workflow will
be executed, as execution context and the interface with the
user are handled by executors’ home peers.

When a new workflow instance is published, the workflow
enactment service of the peer that publishes it instantiates
a workflow engine to handle the distribution of the model to
the other peers that will execute any part of the workflow.
The workflow enactment service of each contacted peer will
then instantiate a new workflow engine to control its portion
of the workflow instance. This engine will remain active
until the peer that published the instance signals its end.

Workflow engines keep waiting until the time specified by
clause beginInstance(aaaammddhhmm) comes, to start
the first pre conditions evaluation loops in order to activate
the activities that depend on them. These activities are
immediately started or placed in the work lists (cf. [10])
of the executors assigned to them. Tasks that are accom-
plished will possibly generate new facts and, consequently,
new pre conditions will be evaluated in the next pre con-
ditions evaluation loop. The workflow engines keep waiting
until new activities are accomplished and/or new facts are
received from other peers, so they can start other pre con-
ditions evaluation loop.

This sequence repeats until all activities of all peers finish.
The peer that published the workflow then reports to all
execution peers that the workflow instance has finished so
they can kill their corresponding workflow engine threads.
In other words, a workflow engine is finished only by the peer
that publishes the instance. This handles properly cancel-
lations and modifications of the model during runtime.

Differently than with queries (which are broadcast), facts
are selectively broadcast, i.e., are only sent by each peer
that generates a fact to the peer(s) executing portions of
the same workflow instance.

6. EVALUATING TEAM
TEAM grants interoperability and autonomy, two requisites
for a workflow specification language mentioned in [3], which
we extend to the operating environment as a whole.

Flexibility is another important requisite that TEAM com-
plies. Independent partners tend to be subjected to many
dynamic market forces. Consequently, the contract, corre-
sponding to the public portion of a (macro) process men-
tioned in [16, 18], which is supposed to be structured, tend
to be greatly influenced by these forces. By using a work-
flow specification language that is based on pre and post-
conditions, we are able to specify processes from non struc-
tured to structured in TEAM. The flexibilities by selection
and by adaption (cf. [9]), with correction steps a priori and
in runtime, may be achieved using the mechanism for selec-
tion on alternatives provided by the language or by addition
or redefinition of facts during runtime.

We used a language processor prototype (see [6]) to verify
the expressiveness of the language. We implemented six-
teen out of twenty workflow patterns listed by van der Aalst
in [20]. The patterns Multiple Merge, Discriminator, Inter-
leaved Parallel Routing and Cancel Activity could not be
concisely implemented using the constructs currently pro-
vided by the language. We believe that this could be ac-
complished by reinforcing boolean expressions formulations,
using the same C language syntax, for instance. We left this
issue for future work.

The declarative process specification facilitates the reuse of
parts of the model on one hand, but turns the specification
a bit verbose. For the structured parts of the processes it is
possible to use graphical tools to automate the generation
of the ordering information (pre and post-conditions).

7. CONCLUSION
At the Database Technology Research Laboratory
– TecBD/PUC-Rio – we are starting the development of an
environment for research in distance learning, using TEAM
to coordinate the distributed and collaborative learning con-
tent execution. This environment will be using the workflow
enactment service prototype that we developed to demon-
strate part of our architecture.

In this paper we presented the characteristics of the compo-
nents and connectors of the architecture named TEAM, con-
ceived to provide data integration and process coordination
of collaborative execution in distributed and heterogeneous
environments composed of loosely coupled execution nodes.
These issues are present in interorganizational workflows.

This work presented an informal description of the com-
ponents of the architecture, the mechanisms for managing
workflow states at the execution nodes of the network, the
mechanisms for managing the network itself as also for col-
laboratively broadcast control messages and queries.



We also described a declarative workflow specification lan-
guage that captures the factual, functional and temporal
dimensions of the model using predicates.

TEAM may be applied both in the public and in the pri-
vate portions of interorganizational workflows, being able to
interface with other WfMSs.

8. ACKNOWLEDGEMENT
We would like to thank Banco Central do Brasil for the
partial support given to this work.

9. REFERENCES
[1] W. Aalst. The Application of Petri Nets to Workflow

Management. The Journal of Circuits, Systems and
Computers, 8(1):21–66, 1998.

[2] R. M. Bastos and D. D. A. Ruiz. Extending UML
activity diagram for workflow modeling in production
systems. In 35th Annual Hawaii International
Conference on System Sciences (HICSS’02), volume 9,
2002.

[3] M. Bernauer, G. Kappel, G. Kramler, and
W. Retschitzegger. Specification of interorganizational
workflows - a comparison of approaches. Proceedings
of the 7th World Multiconference on Systemics,
Cybernetics, and Informatics, pages 30–36, 2003.

[4] L. Böszörmenyi, H. Groiss, and R. Eisner. Adding
distribution to a workflow management system. 10th
International Workshop on Database and Expert
Systems Applications (DEXA), 1999.

[5] A. E. M. Ciarlini. Geração Interativa de Enredos. PhD
thesis, Departamento de Informática, Pontif́ıcia
Universidade Católica do Rio de Janeiro – PUC-Rio,
1999.

[6] L. A. de Moraes Pereira. TEAM: Uma arquitetura
para gerência de e-workflows. PhD thesis,
Departamento de Informática, Pontif́ıcia Universidade
Católica do Rio de Janeiro – PUC-Rio, 2004.

[7] M. Dumas and A. H. M. ter Hofstede. UML activity
diagrams as a workflow specification language. In
M. Gogolla and C. Kobryn, editors, UML 2001 - The
Unified Modeling Language. Modeling Languages,
Concepts, and Tools. 4th International Conference,
Toronto, Canada, October 2001, Proceedings, volume
2185 of LNCS, pages 76–90. Springer, 2001.

[8] H. Eshuis. Semantics and Verification of UML
Activity Diagrams for Workflow Modelling. PhD
thesis, Universiteit Twente, 2002.

[9] P. Heinl, S. Horn, S. Jablonski, J. Neeb, K. Stein, and
M. Teschke. A comprehensive approach to flexibility
in workflow management systems. In Proceedings of
the international joint conference on Work activities
coordination and collaboration, pages 79–88. ACM
Press, 1999.

[10] D. Hollingsworth. The workflow reference model.
Technical Report TC00-1003, Workflow Management
Coalition, 1995.

[11] P. Mangan and S. Sadiq. On building workflow models
for flexible processes. In X. Zhou, editor, Thirteenth
Australasian Database Conference (ADC2002),
Melbourne, Australia, 2002. ACS.

[12] M. Mecella, B. Pernici, M. Rossi, and A. Testi. A
repository of workflow components for cooperative
e-applications. Proceedings of the 1st IFIP TC8
Working Conference on E-Commerce/E-Business,
pages 73–92, 2001.

[13] L. A. M. Pereira, R. N. Melo, F. A. M. Porto, and
B. Schulze. TEAM: Using the grid to enhance
e-learning environments. II Workshop de Grade
Computacional e Aplicações – WGCA’2004, fevereiro
2004.

[14] L. A. M. Pereira, R. N. Melo, F. A. M. Porto, and
B. Schulze. A workflow-based architecture for
e-learning in the grid. The First International
Workshop on Collaborative Learning Applications of
Grid Technology – CLAG’2004, April 2004.

[15] S. Sadiq, W. Sadiq, and M. Orlowska. Pockets of
flexibility in workflow specification. In 20th
International Conference on Conceptual Modeling
(ER-2001), number 2224 in Lecture Notes in
Computer Science. Springer-Verlag Heidelberg, 2001.

[16] W. van der Aalst. Loosely coupled interorganizational
workflows: Modeling and analyzing workflows crossing
organizational boundaries. Information &
Management, 37(2):67–75, March 2000.

[17] W. van der Aalst and A. Hofstede. YAWL: Yet
another workflow language (revised version). QUT
Technical Report FIT-TR-2003-04, Queensland
University of Technology, Brisbane, 2003.

[18] W. M. van der Aalst and M. Weske. The p2p approach
to interorganizational workflows. Proceedings of the
13th Conference on Advanced Information Systems
Engineering (CAiSE’01), pages 140–156, 2001.

[19] W. M. P. van der Aalst, L. Aldred, M. Dumas, and
A. ter Hofstede. Design and implementation of the
YAWL system. Qut technical report, Queensland
University of Technology, Brisbane, 2003.

[20] W. M. P. van der Aalst, A. H. M. ter Hofstede,
B. Kiepuszewski, and A. P. Barros. Workflow patterns.
Distributed and Parallel Databases, 14:5–51, July 2003.

[21] G. Wiederhold. Mediators in the architecture of future
information systems. Computer, 25(3):38–49, March
1992.

[22] G. Wirtz, M. Weske, and H. Giese. Extending UML
with workflow modeling capabilities. 7th International
Conference on Cooperative Information Systems
(CoopIS’2000), pages 30–41, 2000.

[23] M. T. Özsu and P. Valduriez. Prinćıpios de Sistemas
de Bancos de Dados Distribúıdos. Editora Campus, 2
edition, 2001.


